Electro-Mechanical FEM Simulations with "General Motion"

Dr. Fritz Kretzschmar and Dr. Peter Binde Dr. Binde Ingenieure GmbH, Wiesbaden

June 62018
ESCO 2018

Outline

Governing Equations

Maxwell's and Newton's Laws
Materials and Gauge Fields
Formulation
Approximation and Testing
Weak Formulation
Mechanical Coupling
Computational Setup
CAD Setup
Meshing
Results
Dynamic Simulation
Force Plots
Dynamic Simulation

Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial}{\partial t} \mathbf{B} \\
\nabla \cdot \mathbf{D} & =\rho \\
\nabla \times \mathbf{H} & =\frac{\partial}{\partial t} \mathbf{D}+\mathbf{J}
\end{aligned}
$$

Magnetic Gauss's law
Faraday's law
Gauss's law
Ampere's law

Newtons Laws of Motion

$$
\mathbf{F}=\mathrm{m} \ddot{\mathbf{x}}
$$

Newtons Second law
\square With E and H being the electric and magnetic fields; D and B being the displacement field and magnetic flux density

- And F, m and $\ddot{\mathbf{x}}$ being force, mass, and acceleration

Maxwell's equations

$$
\begin{array}{rlr}
\nabla \cdot \mathbf{B} & =0 & \text { Magnetic Gauss's law } \\
\nabla \times \mathbf{E} & =-\frac{\partial}{\partial t} \mathbf{B} & \text { Faraday's law } \\
\nabla \cdot \mathbf{D} & =\rho & \text { Gauss's law } \\
\nabla \times \mathbf{H} & =\frac{\partial}{\partial t} \mathbf{D}+\mathbf{J} & \text { Ampere's law }
\end{array}
$$

Newtons Laws of Motion

$$
\mathbf{F}=\mathrm{m} \ddot{\mathbf{X}} \quad \text { Newtons Second law }
$$

- With E and H being the electric and magnetic fields; D and B being the displacement field and magnetic flux density
- And F, m and $\ddot{\mathbf{x}}$ being force, mass, and acceleration

Maxwell's equations

$$
\begin{array}{rlr}
\nabla \cdot \mathbf{B} & =0 & \text { Magnetic Gauss's law } \\
\nabla \times \mathbf{E} & =-\frac{\partial}{\partial t} \mathbf{B} & \text { Faraday's law } \\
\nabla \cdot \mathbf{D} & =\rho & \text { Gauss's law } \\
\nabla \times \mathbf{H} & =\frac{\partial}{\partial t} \mathbf{D}+\mathbf{J} & \text { Ampere's law }
\end{array}
$$

Newtons Laws of Motion

$$
\mathbf{F}=\mathrm{m} \ddot{\mathbf{x}}
$$

Newtons Second law
\square With E and H being the electric and magnetic fields; D and B being the displacement field and magnetic flux density

- And F, m and $\ddot{\mathbf{x}}$ being force, mass, and acceleration

Maxwell's equations

$$
\begin{aligned}
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =-\frac{\partial}{\partial t} \mathbf{B} \\
\nabla \cdot \mathbf{D} & =\rho \\
\nabla \times \mathbf{H} & =\frac{\partial}{\partial t} \mathbf{D}+\mathbf{J}
\end{aligned}
$$

Magnetic Gauss's law
Faraday's law
Gauss's law
Ampere's law

Newtons Laws of Motion

$$
\begin{array}{ll}
\hline \mathbf{F}=\mathrm{m} \ddot{\mathbf{x}} & \text { Newtons Second law } \\
\hline
\end{array}
$$

- With E and H being the electric and magnetic fields; D and B being the displacement field and magnetic flux density
- And F, m and $\ddot{\mathbf{x}}$ being force, mass, and acceleration

Material Laws

■ Assume a constant permittivity, i.e. $\mathbf{D}=\epsilon \mathrm{E}$; and

- A non-linear permeability, $\mathbf{B}=\mu(t) \mathrm{H}$, i.e. by a given non-linear B-H Curve

Gauge Fields

■ Re-write Maxwell's equations in terms of gauge fields

$$
\begin{aligned}
& \mathbf{E}=-\frac{\partial}{\partial t} \mathrm{~A}-\nabla \phi, \\
& \mathrm{B}=\nabla \times \mathbf{A},
\end{aligned}
$$

- Where A is the Vector potential and ϕ is the scalar potential
\square Fix gauge degrees of freedom, thus apply, e.g. Coulomb's gauge $\nabla \mathrm{A}=0$ or temporal gauge $\phi=0$

Magnetodynamic Approximation

\square Assume slowly varying electric Fields, i.e. $\frac{\partial}{\partial t} \mathrm{E}=0$
■ Split Ohms Law, i.e. $\mathrm{J}=\sigma \mathrm{E}+\mathrm{J}_{s}$ where J_{s} is on Inductors

$$
\nabla \times \frac{1}{\mu} \nabla \times \mathbf{A}+\sigma\left(\frac{\partial}{\partial t} \mathbf{A}+\nabla \phi\right)=\mathbf{J}_{s}
$$

Approximation

- Approximate the Vector potential and the Scalar potential

$$
\mathrm{A} \approx \sum_{p=0}^{P} \mathrm{a}^{p} \quad \text { and } \quad \phi \approx \sum_{p=0}^{P} \mathrm{v}^{p}
$$

Testing

- Perform a Galerkin testing with continuous test functions $\left(\mathrm{a}^{\prime}, \mathrm{v}^{\prime}\right)=\sum_{q=0}^{P}\left(\mathrm{a}^{q}, \mathrm{v}^{q}\right)$
- For the sake of brevety we ommit the sums and write ($a, v ; a^{\prime}, v^{\prime}$) for the whole approximation and testing sets
- With this the formulation reads

$$
\left(\nabla \times \frac{1}{\mu} \nabla \times \mathbf{a}+\sigma \frac{\partial}{\partial t} \mathbf{a}\right) \cdot \mathbf{a}^{\prime}+(\sigma \nabla \mathrm{v}) \cdot \nabla \mathrm{v}^{\prime}=\mathrm{J}_{s} \cdot \mathbf{a}^{\prime}
$$

- Here, we employed that $\mathrm{a}^{\prime}=\nabla \mathrm{v}^{\prime}$
- In the next step we integrate the above equation cell-wise and perform Stokes Theorem (assume cell wise continuous functions)

$$
\left(\frac{1}{\mu} \nabla \times \mathbf{a}, \nabla \times \mathbf{a}\right)_{\Omega}+\left(\sigma \frac{\partial}{\partial t} \mathbf{a}, \mathbf{a}^{\prime}\right)_{\Omega}+\left(\sigma \nabla \mathrm{v}, \nabla \mathrm{v}^{\prime}\right)_{\Omega_{s}}=\left(\mathrm{J}_{s}, \mathrm{a}^{\prime}\right)_{\Omega_{s}}
$$

- This formulation is the basis for a GetDP simulation

■ The General Motion solver of MAGNETICS allows to couple translatory or rotational rigid body motions with an EM FEM simulation

- Coupling is done via Newtons Law, with Forces steaming from the Lorentz Force or the Reluctance Force

Enforced Motion

■ In Enforced Motion simulations the moving part / object is externaly driven (Generator Mode)

- Then, the resulting fields are calculated

Dynamic Motion

- In General Motion the moving part / object is driven by calculated fields (Motor Mode)
- For the CAD geometry creation and for the meshing we used Siemens SC / NX
- For the electromagnetic simulation we use MAGNETICS for SC
- For the electro- mechanical coupling we use GM
- Both MAGNETICS and GM are fully integrated in the Siemens framework

Setup of the Actuator II: Coil

- We use a stranded coil, i.e. the EM fields from the coil are precomputed
- Here, the stranded coil is simulated with 185 turns and a fillfactor of 1

■ As employed material we choose copper

- The turn direction is clockwise
- We apply a constant current of 3A

Setup of the Actuator III: Core

- As core material we use a special pre-glowed magnet material (with certain similarities to steel) that serves as a flux amplifyer
- Said magnet material exhibits a complicated non-linear B-H curve
- Moreover, it is temperature dependent in general; but we assume a pre-glowed state here

Setup of the Actuator IV: Stopper

- In addition we simulate an additional Stopper that is between the magnet and the moving anchor
- The stopper is also made of the same non-linear magnet material in order to guide the magnetic flux
- As a result of the stoppers form the coil/magnet/stopper assembly acts like a horseshoe magnet

Setup of the Actuator V: Anchor

- The anchor is the actual moving part
- It is also made of the same non-linear material as core and stopper
- The total weight is 37 grams
- We expect the anchor to be attracted until the stopper is reached
- We can approximate the
 time-scale in the ms region
- In addition an a surrounding air volume is simulated
- At the boundaries we employ flux tangent conditions, i.e. $\mathrm{A}=0$
- Since we use an Electrical-Mechanical coupled simulation the air is remeshed after each timestep
- To this end an solid from
 shell mesh is used
\square The meshing is completely done in SC / NX
- 3D tetrahedral meshes are used on the inner bodies
- Triangular surface coat meshes are added on all surfaces of said bodies
- A 2D triangular mesh is used on the air boundary
- The air is then meshed with a 3D tetrahedral solid from shell mesh

Dynamic Simulation of an Actuator

Force Plots I: Enforced Motion

- We obtain a huge difference between 2D and 3D FEM

- Simulations agree with measurements

Thank You!

Our special thank goes to:

Daimler AG: For allowing us to use and show this model GetDP Team: For providing the underlying Solver Siemens AG: For letting us implement MAGNETICS into the SC / NX system

