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Governing Equations

Maxwell’s equations

∇ · B = 0 Magnetic Gauss′s law

∇× E = − ∂
∂t B Faraday′s law

∇ · D = ρ Gauss′s law

∇× H = ∂
∂t D + J Ampere′s law

Newtons Laws of Motion

F = m ẍ Newtons Second law

� With E and H being the electric and magnetic fields; D
and B being the displacement field and magnetic flux
density

� And F, m and ẍ being force, mass, and acceleration
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Materials and Gauge Fields

Material Laws

� Assume a constant permittivity, i.e. D = εE; and

� A non-linear permeability, B = µ(t)H, i.e. by a given
non-linear B-H Curve

Gauge Fields

� Re-write Maxwell’s equations in terms of gauge fields

E = − ∂
∂t A−∇φ,

B = ∇× A,

� Where A is the Vector potential and φ is the scalar potential

� Fix gauge degrees of freedom, thus apply, e.g. Coulomb’s
gauge ∇A = 0 or temporal gauge φ = 0
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Approximation and Testing

Magnetodynamic Approximation
� Assume slowly varying electric Fields, i.e. ∂

∂t E = 0

� Split Ohms Law, i.e. J = σE + Js where Js is on Inductors

∇× 1
µ∇× A + σ( ∂∂t A +∇φ) = Js

Approximation

� Approximate the Vector potential and the Scalar potential

A ≈
∑P

p=0 ap and φ ≈
∑P

p=0 vp

Testing

� Perform a Galerkin testing with continuous test functions
(a′, v′) =

∑P
q=0(a

q, vq)
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Weak Formulation

� For the sake of brevety we ommit the sums and write
(a, v;a′, v′) for the whole approximation and testing sets

� With this the formulation reads

(∇× 1
µ∇× a + σ ∂

∂t a) · a
′ + (σ∇v) · ∇v′ = Js · a′

� Here, we employed that a′ = ∇v′

� In the next step we integrate the above equation cell-wise
and perform Stokes Theorem (assume cell wise
continuous functions)(

1
µ∇× a,∇× a

)
Ω
+
(
σ ∂
∂t a,a

′)
Ω
+
(
σ∇v,∇v′

)
Ωs

=
(
Js,a′)

Ωs

� This formulation is the basis for a GetDP simulation
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Mechanical Coupling with General Motion

� The General Motion solver of MAGNETICS allows to
couple translatory or rotational rigid body motions with an
EM FEM simulation

� Coupling is done via Newtons Law, with Forces steaming
from the Lorentz Force or the Reluctance Force

Enforced Motion
� In Enforced Motion simulations the moving part / object is

externaly driven (Generator Mode)

� Then, the resulting fields are calculated
Dynamic Motion

� In General Motion the moving part / object is driven by
calculated fields (Motor Mode)
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Setup of the Actuator I: Overview

� For the CAD geometry
creation and for the
meshing we used Siemens
SC / NX

� For the electromagnetic
simulation we use
MAGNETICS for SC

� For the electro- mechanical
coupling we use GM

� Both MAGNETICS and
GM are fully integrated in
the Siemens framework
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Setup of the Actuator II: Coil

� We use a stranded coil, i.e.
the EM fields from the coil
are precomputed

� Here, the stranded coil is
simulated with 185 turns
and a fillfactor of 1

� As employed material we
choose copper

� The turn direction is
clockwise

� We apply a constant
current of 3A
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Setup of the Actuator III: Core

� As core material we use a
special pre-glowed magnet
material (with certain
similarities to steel) that
serves as a flux amplifyer

� Said magnet material
exhibits a complicated
non-linear B-H curve

� Moreover, it is temperature
dependent in general; but
we assume a pre-glowed
state here
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Setup of the Actuator IV: Stopper

� In addition we simulate an
additional Stopper that is
between the magnet and
the moving anchor

� The stopper is also made
of the same non-linear
magnet material in order to
guide the magnetic flux

� As a result of the stoppers
form the coil/magnet/-
stopper assembly acts like
a horseshoe magnet
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Setup of the Actuator V: Anchor

� The anchor is the actual
moving part

� It is also made of the same
non-linear material as core
and stopper

� The total weight is 37
grams

� We expect the anchor to
be attracted until the
stopper is reached

� We can approximate the
time-scale in the ms region
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Setup of the Actuator VI: Air

� In addition an a
surrounding air volume is
simulated

� At the boundaries we
employ flux tangent
conditions, i.e. A = 0

� Since we use an
Electrical-Mechanical
coupled simulation the air
is remeshed after each
timestep

� To this end an solid from
shell mesh is used
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Meshing

� The meshing is completely
done in SC / NX

� 3D tetrahedral meshes are
used on the inner bodies

� Triangular surface coat
meshes are added on all
surfaces of said bodies

� A 2D triangular mesh is
used on the air boundary

� The air is then meshed
with a 3D tetrahedral solid
from shell mesh
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Dynamic Simulation of an Actuator
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Force Plots I: Enforced Motion

� We obtain a huge difference between 2D and 3D FEM
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Force Plots II: Dynamic Motion

� Simulations agree with measurements

0

25

50

75

100

0 1 2 3

Fo
rc

e
 /

 N

Displacement / mm

MAGNETICS for SC 3D



Electro-Mechanical FEM – Kretzschmar– ESCO 2018 17 / 17

Thank You!
Our special thank goes to:

Daimler AG: For allowing us to use and show this model
GetDP Team: For providing the underlying Solver

Siemens AG: For letting us implement MAGNETICS into the
SC / NX system
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